
The Word Services Suite

The Word Services suite defines Apple event constructs for such services as spell checking and
grammar checking. The suite can be used for any service that needs to examine and change the
text in a document. The suite should be supported by applications that allow text to be edited
by a user, such as word processors, drawing programs, spreadsheets, or electronic mail
programs, as well as spell checking, grammar checking, bibliography and hyphenation
programs.

By: Michael D. Crawford

Working Software, Inc.

(408) 423-5696

AppleLink D1620

February 20, 1992

Word Services Version 0.7 2/15/23

The Word Services Suite 3

Introduction to the Word Services suite 6
Overview of the Word Services suite 6
Typical client applications for the Word Services suite 7
ImportantInformationAboutThisSuite 7

Usage scenarios 8
Performing Faceful Batch Mode Checking 9
Performing"Predatory" Faceful Batch Checking 12
Performing Faceful Interactive Checking13
Performing Faceless Interfactive Checking 14
Performing Faceless Batch Checking 14
Spell checking Single Words 15

Assumptions 16
Handling Exceptions 16
Requirements for Supporting Word Services 16

Apple events defined in the Word Services suite18
Table X-1 Apple events defined in the Word Services suite 18

BatchProcessMyText -Apply a word service to one or more blocks of
text. 19

CheckWord—Spell check a single word 24
InteractivelyProcessText—Start an interactive spelling session

26
CheckWordInteractively— Check a word while typing 28

Object classes defined in the Word Services suite 30
Table X-2 Apple event object classes defined in the Word Services suite

30
Figure X-1 Object inheritance hierarchy for the Word Services suite30

cText—series of characters 31
cChar—text characters 35
cApplication—a standard Macintosh application37

Primitive object classes defined in the Word Services suite 40
Table X-3 Primitive object classes defined in the Word Services suite

40
Descriptor types defined in the Word Services suite 41
Table X-4 Descriptor types defined in the Word Services suite 41
.c.Key forms defined in the Word Services suite 42

Word Services Version 0.7 2/15/23

Table X-5 Key forms defined in the Word Services suite 42
Comparison operators defined in the Word Services suite 42
Table X-6 Comparison operators defined in the Word Services suite

42
Constants defined in the Word Services suite 43
Table X-7 Constants defined in the Word Services suite 43

Word Services Version 0.7 2/15/23

Introduction to the Word Services suite
The Apple Event Word Services Protocol is a protocol to allow any application to have its text
inspected and modified by programs that operate on text such as spelling checkers or grammar
checkers. It is designed to be a simple extension of the Core Suite which word processors will
find easy to implement.

"Word Processor" in this document means any application that allows text editing, not just
programs sold as word processors. The word processor is a client in this protocol.

"Speller" here refers to spelling and grammar checkers, or any other program that acts as a
server in this protocol.

Overview of the Word Services suite

The Word Services suite defines Apple events to
■ Apply a word service to one or more blocks of text.
■ Replace text upon user confirmation.
■ Spell check a single word.
■ Start an interactive spelling session.
■ Send text to a server for interactive checking.
■ Check possible errors during interactive checking.

The Word Services suite extends object classes for
■ cText
■ cChar
■ cApplication

Applications that should support the Word Services suite

The following types of applications should support the Word Services suite:
■ Spelling checkers
■ Grammar checkers
■ Hyphenators
■ Natural language translators
■ Indexers

Word Services Version 0.7 2/15/23

■ Bibliography programs
■ Any application that can take text from a document and change it.

Typical client applications for the Word Services suite

The following types of applications are likely to be clients of applications that support
the Word Services suite:
■ Word Processors
■ Page Layout applications
■ Database
■ Spreadsheet
■ Electronic Mail
■ Graphics
■ Personal Information Management
■ Any application that allows a user to edit text

Important Information About This Suite

The Word Services suite is designed to be easy for a word processor to implement. To
support the protocol, the word processor must support a small subset of the Core
Suite, particular the GetData and SetData events, the formRange key form, and the
formAbsolutePosition key form, including positions relative to the end of the container.

All a word processor need do to get its text spellchecked is to send a single
BatchProcessMyText event with one or more object specifiers for the text to be
checked, then continue its event loop, in which the word processor will respond to
events sent by the speller.

Word Services Version 0.7 2/15/23

Usage scenarios
There are four different basic scenarios - faceful batch, faceful interactive, faceless batch, and
faceless interactive. One may also request that single words be checked directly.

There are two main styles of operation. In the faceful style, the speller provides the user
interface. Misspelled words are presented in a dialog drawn by the speller, perhaps with a list
of guesses, and the user may be allowed to skip or replace the misspelled word. If the word
processor supports it, the speller may request that the misspelled word be highlighted in the
word processors own window, thus displaying the word in its own style and in the context of the
whole document.

If background highlighting is not supported, then the speller will display the word in its own
window, possibly with some simple formatting.

Faceless spellers act as background servers. The word processor will send some text to the
speller, which will send back a report listing which words were misspelled. The word processor
will then draw its own dialog, and may request lists of guesses from the speller.

In either style of operation, one can have two modes of spellchecking. Batch mode will
spellcheck a range of text (typically the current selection, or the whole document) upon an
explicit user command. Interactive checking does spellchecking as the user types. The word
processor must parse word breaks and send whole words to the speller. If the word is correct,
the speller does not respond. If the word is incorrect, an error signal of some sort is given
(usually a SysBeep). The user may ignore the signal (either because she knows the word is
correct, or she just deletes and corrects the word herself), or bring up a dialog to do the
replacement.

Note that the interactive mode can be slow. The time it takes to generate the Apple event, do a
Multifinder switch, receive the event, look up the word in the dictionary and switch back may be
unacceptable to the user, especially if the text is sent a character at a time.

For this reason interactive checking will normally be done asynchronously – the word processor
will send the Apple event, but will continue without switching out. During the next normal
switch, the speller will start the word look up, but should allow itself to be switched back out
before it is done if the look up takes too long (it will get several opportunities to run for each
word, as each character typed will return from a separate WaitNextEvent call).

Both programs should be able to deal with the cases of the user typing some text after the
misspelling before reacting to the signal, typing another incorrect word while one is pending,
moving the mouse and typing bits of words in different places, backspacing, clicking the mouse
in the middle of a word and changing it – for the most part, the speller will just ignore the

Word Services Version 0.7 2/15/23

word, but a fancier speller could try to queue up mistakes, or request the whole word that the
cursor just left.

Performing Faceful Batch Mode Checking

The user will select some text to be checked. This may be done by shift-clicking several cells in
a spreadsheet or text fields in a drawing, or highlighting a range of text in a word processor, or
selecting "Check Whole Document" from the menu.

The word processor will create an object specifier for each text field to be checked. Note that
the object specifier refers to an object in the word processor's own document, and that each
object is equivalent to a cText object (basically, it must be something that can contain
paragraphs or characters. Also if one does a GetData on the object itself, all of the text within it
will be returned).

The word processor will check to see if it has saved the location of the speller (that is, an alias
record). The speller may be currently running; if it is, then the word processor will see its
creator code in the list of PPC ports by using the IPCListPorts function. If it is not, then it can
launch the speller from the saved location by using the Open Selection event from the Finder
Suite or by calling LaunchApplication directly if the application is on the same machine.

If the word processor has not saved the speller’s location (or cannot find it) the word processor
will locate the speller with the PPCBrowser. This location can then be saved so this step can be
avoided in the future.

The word processor can optionally use Get Data to get the pBatchMenuString and
pInteractiveMenuString from the speller, and save them to add to its menu. The word processor
can also use Get Data to get the pLocation property from the speller - this is an alias record that
it can save in its Preference file to associate with the menu strings. These properties may or
may not be defined for each server implementation.

The word processor will send the speller a "Batch Process My Text" event. The keyDirectObject
parameter to the event will either be a single object specifier or a list of several object specifiers
(or possibly some kind of specifier that indicates that it is the head of a list of object specifiers
that is kept by the word processor). Once the reply is received the word processor will resume
its normal event processing.

Note that this is the key to easy implementation of the protocol for word processors - they need
only send one event, then forget about it and handle events normally. Of course, they must
support the necessary events, classes, and key forms from the Core Suite.

Word Services Version 0.7 2/15/23

When the speller receives the "Batch" event it will record the object specifiers and the address
of the sender, then return a reply indicating that there is no error. If the speller is busy, it will
send errAEInTransaction as an error code in the reply.

The speller will then make itself the foreground application by calling AEInteractWithUser. The
word processor will become the second from the front.

The speller will then display a dialog (or some other sort of user interface). The dialog should
be movable to allow the user to view the text in the word processor's window.

For each object specifier in the list of object specifiers sent by the word processor:

The speller will Set Data on pLockTransactionID for the object. This is
to prevent other Apple Events from changing the text while it is being
worked on.

The speller will make new object specifiers from the original. The new
object specifiers will specify paragraphs or ranges of characters within
the original.

The speller may send Get Data Size events to find the amount of text
within the object. Note that Apple Events may not contain more than
64K of data, and a particular speller may have a limited amount of
memory.

The speller will send Get Data events to get the text. It may get the
whole text object, or paragraphs within it, or ranges of characters.

The speller may send Create Element and Set Data events to create and
set the cBackgroundHilite elements in the word processor's application
object. The value of the cBackgroundHilite is a range of characters
(objects of class cChar). If there are no cBackgroundHilite elements
then there is no text shown highlighted in the background. If there is a
range then the specified characters are highlighted just as they are
when selected by the mouse. The normal way to do this would be to set
the user's selection just as if they dragged the mouse over it, and have a
flag in the code that displays the selection. In most applications, the
updating code checks to see if the window is in the front, and if it is not,
does not display the selection. If there is one or more
cBackgroundHilite objects, then the selection is displayed. An ideal
implementation will use a two stage hilite similar to the way MPW and
MacApp do, with a dim outline while in the background and a regular
hilite while in front.

Word Services Version 0.7 2/15/23

The speller will send Delete events to remove cBackgroundHilite
elements when it is done. It need not delete and create each element
each time it hilights a new word; instead it can use Set Data to change
the value of an existing element.

(If the word processor does not support background highlighting, it
should return an error code to the SetData event. If the speller receives
an error code, it should create a window to display the text itself. Also,
it should allow the user to choose whether the text is shown in the
speller or the word processor.)

The speller will send SetData events to set a range of characters when it
needs to replace them. The range specifier will consist of two object
specifiers for single characters. Each character specifier will use
formAbsolute position to give the offset from the end of the
container.

The speller will Set Data on the propTransactionID property of the text
field, setting it to kAEAnyTransaction. This allows the object to be
accessed by any other events.

When the speller is done, it will make the word processor the foreground application again.

This scenario illustrates several key points:

1. To operate the protocol, the word processor need only send one Apple Event on its
own initiative. The whole operation will involve an extended sequence of apple
events and replies, but the logic to drive this is entirely in the speller. The word
processor need only respond passively to the Apple Events. There is no
"spellchecking mode" that it needs to enter, with the exception that if a
cBackgroundHilite element gets set, the screen updating code needs to show the
selection while in the background, preferably in a "dim" hilite mode similar to MPW.

2. The particular service that is performed on the text depends on which server that
the word processor connects to. This may be a grammar checker, a spelling
checker, or some other sort of program. The word processor should allow each
server its own menu item (possibly two, if it supports both interactive and batch
mode), and should store the location of each.

Word Services Version 0.7 2/15/23

3. If there is no saved speller location, the user must launch the speller before
starting the session. Most likely a naive user will need to cancel the PPCBrowser,
launch the speller from the Finder, switch back to the word processor, and select
"check spelling" again. It sure would be great if there were a way to register the
kind of service an application provides.

4. The formRange key form is not very clearly described in the Object Support Library
documentation. When an object accessor is given a formRange, it must coerce the
selection data to typeAERecord. The data is of type 'rang', which is identical to
typeAERecord, but AEGetKeyDesc does not recognize 'rang'. (The Object Support
Library apparently contains a coercion handler for this purpose). Use
AEGetKeyDesc on the coerced selection data with the keywords keyAERangeStart
and keyAERangeStop to get the object specifiers for the beginning and ends of the
range. You must then call AEResolve with each specifier to get a token for the
beginning and end of the range - note that this is a recursive call to AEResolve, and
therefore a recursive call to the object accessor itself.

5. There is a problem when creating the first cBackgroundHilite object. Note that
there are no initial elements to give the location to insert the new element at.
Instead, one passes the object specifier for the cText object that is the container,
and the keyAEPosition field contains the value kAEBeginning. Subsequent items
can be created by using the constants kAEEnd, or kAEAfter.

Performing "Predatory" Faceful Batch Checking
In this mode, the user launches the speller, and then opens a word processor document from the
file menu of the speller. The speller will launch the application that created the document, and
use Get Structure events to locate the text fields within the document, and then use Get and Set
Data as above to check and replace the text.

This is primarily meant to allow spellchecking for documents created by word processors that
do not support the Word Services protocol. As long as the word processor supports the Core
Suite sufficiently, its documents can be processed by a Word Services speller. This also would

Word Services Version 0.7 2/15/23

allow a user to drag a document icon onto the speller in the Finder. The speller's response to an
ODOC event will be to locate the creator have it open the document.

For predatory checking to work, the speller will have to explore the word processor's object in
order to locate the text items. This would be fairly simple for a simple text editor window, but
could be quite complicated for a highly structured document.

Performing Faceful Interactive Checking
The user will request that interactive checking be turned on. Note that a word processor could
have a preference setting to turn interactive checking on automatically when the word
processor is launched.

The word processor will locate the speller as above, and send it an "Interactively Process Text"
event, and await a reply. If reply is received without an error, the word processor will send each
word to the speller as the user completes typing it in a "Check Word Interactively" event. (In
general, typing a word break character such as a space or punctuation should cause a word to
be sent).

Every separate word should be sent. This includes any punctuation, as the speller may have the
ability to check capitalization after periods, or may be a grammar checker that will rigorously
check punctuation.

Each word is sent asynchronously, with no reply requested. It may take some time for the
speller to check the word; waiting for replies would cause obnoxious pauses. Not using replies
will reduce overhead. If the speller wishes to complain of some error it should do so on its own
with the notification manager.

Each event sent to the speller will contain the following parameters:

- keyAEDirectObject - a typeObjectSpecifier that specifies the word that is sent, relative to the
beginning of the container.
- keyAEData - the actual text of the word that is sent

If the speller finds an error it should make some noise or blink the menu bar to alert the user.
The speller should use the Notification Manager to set an icon blinking in the menu bar as the
user may just ignore the error (it might be a correct word that is not in the dictionary) or
correct it herself.

The user may then select "Check Word" from the word processor's menu. If there is a text
selection, the word processor must use the "Batch Process My Text" event to check the whole

Word Services Version 0.7 2/15/23

selection. (The user may not be checking the last word that was beeped at). If there is no
selection, the word processor must send the "Process Last Error" event to the speller.
(Alternatively, if there is a selection, the "Check Word" item may be greyed out, so the user is
forced to choose the "Check Spelling" or "Check Grammar" items).

Upon receiving the "Process Last Error" event the speller will send a Get Data event back to the
word processor, to get the text of the erroneous word again. This is important because
something may have occurred to invalidate the object specifier for the word (text may have
been added before the word, or the user may have deleted it).

If the returned text does not match the text that was originally questioned, the speller should
show an alert, then return control to the word processor.

If the text does match, then the speller should show its dialog. If the user wants to replace a
word, the speller will use Set Data to do the replacement.

The speller could also just replace words automatically when it finds an error, without
consulting the user, by doing the verification when it finds the error, then using Set Data to do
the replacement.

Note that the object specifier sent must be of formAbsolutePosition relative to the beginning of
the container, rather than the end as is used in batch checking, because the end of the container
is changing as the user types.

If the word is verified, then the speller may display its dialog, and get a command to replace the
word from the user, which it does by using Set Data.

Performing Faceless Interactive Checking
This is basically similiar to the faceful interactive scenario, except that when the user requests
that a questioned error be looked up, a Query Replace event will be used to allow the user to
decide whether to replace the text.

Performing Faceless Batch Checking
This scenario is basically similiar to the faceful mode. However, the speller does not send
events to hilight and replace the text directly. Instead, it sends "Query Replace" events to the
word processor, which include an object specifier for the text in question, a list of replacement
strings, and a text string that explains what the message is.

Word Services Version 0.7 2/15/23

Note that the word processor must allow the user to type in her own replacements, and that the
text that needs replacing could extend outside the range which is specified. This is because the
error may be an error in grammar that ranges over the whole paragraph, and the correction
that is needed may be different from what the grammar checker guesses.

If this is too complex, a reasonable solution would be to just cancel out of the "Query Replace"
dialog to have the user replace the text in the document. The user could then select the
remaining text in the document and have it checked.

Spell checking Single Words
Script writers may want to have a very simple means to spellcheck single words, and possibly
get a list of guesses back.

To do this, send the speller a "Check Word" event, with a typeText value in its direct object. The
reply to this event will have a typeBoolean in its direct object, which will be "true" in value if the
word is correct. Note that the reply should only have an error if there was an error in handling
the Apple Event; if the word is incorrect, the reply will have no keyErrorNumber parameter, and
will have a "false" value in its direct object.

If the word processor wants some guesses for correct spellings, it should add a
keyWSGuessCount parameter to the Check Word event. This will be a typeInteger value that
will contain the maximum number of guesses or desires. (The speller may not be able to return
as many as are requested). The value may be zero, or the parameter may be left off entirely if
guesses are not desired. Any guesses will be returned in the keyAEData parameter to the reply
as a typeAEList of typeText objects.

Note that guessing can be time consuming. The user should have an option to have guessing on
every error, or only on request. If a word is incorrect, and the user requests a guess, then the
same word should be sent again.

Word Services Version 0.7 2/15/23

Assumptions

Handling Exceptions

The "Fire and Forget" method of starting a faceless batch mode spellchecking session
allows error conditions to be handled easily. If the speller cannot continue, it should
just stop sending events to the word processor. If the word processor encounters an
error, it should return error replies to the speller, which should then stop
spellchecking.

The worst that would happen here is that a range of text might stay locked.

In any case, the speller should stop its work if it receives an error reply from the word
processor, unless the error is received from an attempt to do an optional operation,
like setting the background highlighting.

Requirements for Supporting Word Services

The word processor must support at least a minimal set of Core Suite Apple Events and object
model types. (It should support them all for other purposes, though).

The Apple Events it must support are
■ Get Data Size
■ Get Data
■ Set Data
■ Create Element (to create the cBackgroundHilite objects)
■ Delete (to delete the cBackgroundHilite objects)

The key forms that it must support are
■ formPropertyID
■ formAbsolute position, including

positions relative to the beginning of the container,
positions relative to the end of the container

Word Services Version 0.7 2/15/23

■ formRange

The key form that it must support if the "list head" specifier is used is:
■ formRelativePosition

The properties that it should support (recommended, but optional) are:

■ pColor
■ pFont
■ pPointSize
■ pTextStyles

These are all properties of the cChar class, defined in the Text Suite. A word processor that did
not allow formatting (such as a simple spreadsheet or database) would not be expected to
support them, but regular word processors and page layout programs would be.

The word processor will send the object specifier for one or more whole containers of text to the
speller. The speller will add descriptors to the original object specifiers to make new ones, and
send them back to the word processor. The object specifiers must stay valid if the length of the
text within them changes. This is not a problem if specifiers are sent for whole cText objects,
but if the user selects some arbitrary run of text within a document, the word processor cannot
specify the selection by giving the whole range relative to the beginning of the document. The
beginning of the range must be given relative to the beginning of the document, and the end
must be relative to the end of the document ("spellcheck the text starting with the 29th
character from the beginning of the first text field of window 'foo', and ending with the 37th
character from the end of the first text field of window 'foo'").

Of course, the object specifier that the word processor sends must be one that it can resolve
itself. How it chooses to specify the object is completely up to the word processor - it can
specify windows by name, location, or whatever. The innards of the object specifier are not
inspected by the speller.

Word Services Version 0.7 2/15/23

Apple events defined in the Word Services suite

The Apple events defined in the Word Services suite are described in the following
sections. Table X-1 lists these Apple events.

■ Table X-1 Apple events defined in the Word Services suite

Name Requested action

BatchProcessMyText Apply a word service to one or more blocks of text.
QueryReplace Replace text upon user confirmation
CheckWord Spell check a single word
InteractivelyProcessText Start an interactive spelling session
CheckWordInteractively Check a word during an interactive session

Word Services Version 0.7 2/15/23

BatchProcessMyText – Apply a word service to one or
more blocks of text.

This event specifies one or more blocks of text to apply a service to. It does not
actually send the text to the server, but instead sends either a single object specifier
for a cText object, or a list of several object specifiers. After the event is sent, the word
services server may bring itself to the front, and use Get Data events to actually get
the text, and Set Data events to replace the text in the document window. The server
may also attempt to use Set Data to highlight text in the client's window; if this fails,
then the server will show the text in its own window.

Event Class kWordServicesClass

Event ID kWSBatchCheckMe

Parameters
keyDirectObject

Description: This is the object specifier for the text to be checked.
If the descriptor is of typeAEList, it must be a list of
items of typeObjectSpecifier. Each object specifier is
expected to resolve to an object of class cText in the
client's own application -that is, the server does not
resolve the object, instead it sends the object
specifier back to the client.

Descriptor Type: typeObjectSpecifier or typeAEList.
Required or Optional? Required

keyListHead
Description: This flags the use of a list head specifier in the direct

object.
If the keyListHead parameter has a value of true,
then the keyAEDirectObject parameter is an object
specifier a list of object specifiers that is maintained
by the word processor. Each element in this list
specifies a cText object that is to be spellchecked.
The spellchecker may use the object specifier as a
container to request the first element of the list by
asking for the typeObjectSpecifiers that are contained
in the list. The first element is always specified using
formAbsolutePosition (give me the first).

Word Services Version 0.7 2/15/23

Succeeding elements are specified using formRelativePosition (give me the
next).
This allows the word processor to request the
processing of a large number of blocks of text without
having to worry about overflowing the 64K packet
size limit. There is the cost that the word processor
will need to maintain the list. A word processor need
not literally keep a list of object specifiers; it needs
only to know which items are selected for
spellchecking, so it can create the object specifiers as
they are requested.

Descriptor Type: typeBoolean
Required or Optional? Optional (default value: false)

keyFacelessMode
Description: This specifies that faceless mode is to be used. If the

keyFacelessMode parameter is true, then
spellchecking is done in faceless mode. The word
processor should use a unique transaction ID for the
batch event; this transaction ID will be used by the
subequent "Query Replace" events. (Do not set the
kAENeverInteract flag in the batch event. The speller
may need to do some interaction, such as to prompt
the user to locate a dictionery file).

Descriptor Type: typeBoolean
Required or Optional? Optional (default value: false)

keyWantCleanReport
Description: This specifies that the word processor wants to know

what text has been checked. If the
keyWantCleanReport parameter is true, then the
speller will send Set Data events to set the
"pCleanText" of ranges of text.
This allows a word processor that supports the
property to mark the text as "clean". When the user
types into that range of text, it is marked as "dirty".
When spellchecking is requested by the user, the
word processor may request spellchecking only for
the dirty blocks by sending only their objects
specifiers, rather than the whole document. This can
speed up spellchecking.
The concept of "clean" and "dirty" text might be
completely meaningless for some sorts of services. A
service that simply counted words would not get
accurate results if it did not get

Word Services Version 0.7 2/15/23

all the text each time. There ought to be a way to allow the user to choose
whether this optimization gets used at all.

Descriptor Type: typeBoolean
Required or Optional? Optional (default value: false)

keyClientAddress
Description: This identifies the client word processor. If the

keyClientAddress parameter is present, then its value
is used as the address of the word processor. This is
meant to allow a third program, such as a scripting
application, to tell the speller to check some other
word processor's document.

Descriptor Type: typeSessionID
Required or Optional? Optional

Reply Parameters
keyErrorNumber

Description: The result code for the event
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

Result Codes
errAEEventFailed –10000 The Apple event handler failed

when attempting to handle the Apple event
errAEInTransaction –10011 description

Word Services Version 0.7 2/15/23

QueryReplace – Replace text upon user confirmation

The speller sends this event to inform the word processor that a range of text may
need to be replaced.

Event Class kWordServicesClass

Event ID kWSQueryReplace

Parameters
keyDirectObject

Description: This is an object specifier for the text that is
questioned by the speller. The word processor should
highlight this text in the document window, and scroll
it into view in such a way that it is visible behind any
dialog it may show.

Descriptor Type: typeIntlText
Required or Optional? Required

keyAEData
Description: This is a list of possible replacements for the

questioned text. There may be zero, one, or more
items in the list

Descriptor Type: typeAEList (of typeIntlText objects)
Required or Optional? Optional (default value: a list of one null string)

keyErrorString
Description: Description: This is a human readable string that

explains what sort of error has occurred. For
example, "Incorrect spelling", or "Split infinitive".

Descriptor Type: typeAEList (of typeIntlText objects)
Required or Optional? Optional (default value: a list of one null string)

keyTransactionIDAttr
Description: This is the transaction ID that was supplied in the

"Batch Process My Text" or "Interactively Process
Text" event. The transaction ID is supplied as an
argument to the AECreateAppleEvent system call.

Descriptor Type: typeLongInteger

Word Services Version 0.7 2/15/23

Required or Optional? Required.

Reply Parameters
keyErrorNumber

Description: The result code for the event
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

keyErrorString
Description: A character string that describes the error, if any, that

occurred when the event was handled
Descriptor Type: typeIntlText
Required or Optional? Optional

Word Services Version 0.7 2/15/23

CheckWord – Spell check a single word

This event requests that a single word be spellchecked. An optional parameter gives
the maximum number of possible replacements to the word that may be returned in a
list in the reply.

If the application that receives this event is not a spelling checker, the action is not
defined. There may be some other use to this than just checking spelling, like looking
up synonyms in a thesaurus.

Event Class kWordServicesClass

Event ID kWSCheckWord

Parameters
keyDirectObject

Description: This is the text of a single word to be checked.
Descriptor Type: typeText
Required or Optional? Required

keyWSGuessCount
Description: This is the maximum number of guesses that are

desired if the word is incorrect.
Descriptor Type: typeInteger
Required or Optional? Optional. If it is not present, a default value of 0 will

be used.

Reply Parameters
keyAEResult

Description: This contains a list of possible replacements to an
incorrect word.

Default Descriptor Type: typeAEList (a list of typeText objects)
Required or Optional? Optional. It is only present if a non-zero amount of

guesses were requested. If guesses were requested,
but non were available, it may either be an empty list,
or may be entirely absent. (Thus it has the default
value of an empty list). Even if it is present, it may
not contain as many guesses as were requested.

keyErrorNumber
Description: The result code for the event

Word Services Version 0.7 2/15/23

Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

keyAEDirectObject
Description: This contains a true value if the word was correct, or

false if not.
Descriptor Type: typeBoolean
Required or Optional? Required

Word Services Version 0.7 2/15/23

InteractivelyProcessText – Start an interactive spelling
session

This apple event requests a speller to start up an interactive text checking session. No
data is sent in this event; it is used to make sure that the speller is available and
capable of interactive spellchecking. If a reply is received with no error code, then the
speller may start sending words for checking with the CheckWordInteractively event.

Event Class kWordServicesClass

Event ID kWSStartInteractive

Parameters
keyFacelessMode

Description: This specifies that faceless mode is to be used. If the
keyFacelessMode parameter is true, then
spellchecking is done in faceless mode. The word
processor should use a unique transaction ID for the
event; this transaction ID will be used by the
subequent "Query Replace" events. (Do not set the
kAENeverInteract flag in the event. The speller may
need to do some interaction, such as to prompt the
user to locate a dictionery file).

Descriptor Type: typeBoolean
Required or Optional? Optional (default value: false)

Reply Parameters
keyErrorNumber

Description: The result code for the event
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

keyErrorString
Description: A character string that describes the error, if any, that

occurred when the event was handled
Descriptor Type: typeIntlText
Required or Optional? Optional

Word Services Version 0.7 2/15/23

Word Services Version 0.7 2/15/23

CheckWordInteractively – Check a word while typing

This apple event sends words to a server that has already received the
InteractivelyProcessText event and is prepared to receive words and check them as
they come in.

Event Class kWordServicesClass

Event ID kWSCheckInteractive

Parameters
keyDirectObject

Description: A typeObjectSpecifier that specifies the word that is
sent, relative to the beginning of the container. It
must not be sent relative to the end, since the end is
changing as the user types.

Descriptor Type: typeObjectSpecifier
Required or Optional? Required

keyAEData
Description: the actual text of the word that is sent
Descriptor Type: typeIntlText
Required or Optional? Required

Reply Parameters
keyErrorNumber

Description: The result code for the event
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

keyErrorString
Description: A character string that describes the error, if any, that

occurred when the event was handled
Descriptor Type: typeIntlText
Required or Optional? Optional

Word Services Version 0.7 2/15/23

Object classes defined in the Word Services suite

The Apple event object classes defined in the Word Services suite are described in the
following sections. Table X-2 lists these object classes.

■ Table X-2 Apple event object classes defined in the Word Services
suite

Object class ID Description

cText Description
Properties: pLockTransactionID
Element Classes: cBackgroundHilite

cChar Description
Properties: pCleanText
Element Classes: none

cApplication Description
Properties: pBatchMenuString,

pInteractiveMenuString, pMenuIcon,
pLocation

Element Classes: none

Figure X-1 illustrates the inheritance hierarchy for the object classes defined in the
Word Services suite. Listed for each object class are the properties, element classes,
and Apple events that have not been inherited from object classes higher in the
inheritance hierarchy.

■ Figure X-1 Object inheritance hierarchy for the Word Services suite

[Hierarchy illustration here]

Word Services Version 0.7 2/15/23

cText—series of characters
This is an extension to the existing cText object class. We add an
element that specifies text that is shown highlighted while the window containing
the text is in the background.

Superclass cAbstractObject

Default Descriptor
Type

typeIntlText

Properties
pLockTransactionID

Description: The pLockTransactionID property holds the transaction id
for a transaction that has exclusive access to the object. If
an event with a different ID attempts to read, write, or
modify the object, the word processor should return
errAEInTransaction as a result.
If there is no lock owner, then the property has the value
"kAnyTransactionID".
When a word processor has resolved an object specifier
that refers to a cText object, or a property or element of a
cText object, it should check to see whether a lock owner
exists for the cText object. If it does, then the word
processor should extract the transaction ID from the Apple
Event. If the transaction ID does not match, then the word
processor should return errAEInTransaction rather than
returning the result.
An implication of this property is that if its value is not
kAnyTransactionID, it may not be set except by an event
whose transaction ID matches its value.
A word processor might implement this property by
maintaining a list of locks, with the contents of the list
being the transaction ID's and pointers to the cText
objects. Since there should be at most a few (usually zero
or one) locks in existence, this way might be easier than
adding a transaction ID field to the data structure that
implements the cText objects.
A speller can still operate on a word processor that does
not support this property. It can try to Get Data from the
property. If an error is returned to the read, then the
property is not implemented, and the

Word Services Version 0.7 2/15/23

speller will go on as if it had gotten the lock. The lock property exists to make
the Word Services Suite more reliable, but is not strictly
necessary, if the user takes care not to allow more than
one other program to access her document at a time.
There is a problem in determining the value to use for the
transaction ID. We cannot use Begin Transaction, as it will
lock out all other transactions. The speller can simply
make one up, but there is a danger that it is not unique. I
would rather not add a new Apple Event that the word
processor must support to supply a unique ID.
A reasonable convention would be for the speller to use
the value of Ticks at the time it sends the event to set the
property as the transaction ID. The probability of two
different applications getting to send Set Data events
during a single tick is fairly small.

Object Class ID: typeLongInteger
Inherited? No
Modifiable or
Non-modifiable? Modifiable

Element Classes

cBackgroundHilite
Description: These elements are the sets of cChar objects contained in

the cText container that are shown highlighted while the
containing window is in the background. Ordinarily a
user's selection is not highlighted when a window is not in
front, but the text specified by the value of the property
will be.
This element exists to allow a Word Services server to
highlight a suspect word in the original document, rather
than showing it's own window. This way the suspect word
can be displayed with all of its font, style, and other
attributes, in the context of the original document.
Ordinarily this element will be implemented by setting a
text selection, with a special case that leaves the
highlighting of the selection on when the window is
backgrounded. If you desire, you do not have to change
the user's selection to show the highlighting (the
highlighting is for display purposes only), but instead you
could preserve the user selection, and implement this a
different way. Also, this property is entirely optional. If it
is not

Word Services Version 0.7 2/15/23

supported in a client, the server will display the sample text in its own window.
Support for this element is entirely optional. If a word
processor does not support it, it should return an error
code when the speller tries to set it. The speller must then
show the text in its own window. Support for more than
one element is also optional. If the word processor cannot
show disjoint selections, it should return an error when the
speller tries to set any elements other than the first.
Deleting all of the elements turns off the background
hilighting.
Note that one sets this element by using a Set Data event,
where the data to be set is a typeObjectSpecifier that uses
a formRange to specify a range of characters within the
cText object to highlight. The object specifier for the
element itself will use a formAbsolutePosition to specify
which cBackgroundHilite element to set.

Inherited? No
Modifiable or
Non-modifiable? Modifiable
Key Forms: formAbsolutePosition

Apple Events
Apple events from the Core suite:
Get Data Inherited from cObject

Word Services Version 0.7 2/15/23

cChar—text characters
This is an extension to the existing cChar object class. We add a property
that allows a range of text to be marked as "clean" so that a word processor may choose
not to have it spellchecked again in the future.

Superclass cText (Core suite)

Default Descriptor
Type

typeIntlText

Properties
pCleanText

Description: the pCleanText property of a character is "true" if it has
been spellchecked since it was last edited. It does not
make sense to have a clean character (though it is an ideal
to strive for), but ranges of characters may be marked
clean. This is a property possessed by the word processor
that may be set by the speller, but only if the word
processor requested it in its "Batch Process My Text"
event. When the user requests spellchecking, the word
processor can send object specifiers for the dirty text
blocks. When a user edits a clean text block, the word
processor can mark the block as dirty.

Object Class ID: typeBoolean
Inherited? No.
Modifiable or
Non-modifiable? Modifiable

Apple Events
Apple events from the Core suite:
Set Data Inherited from cObject

Word Services Version 0.7 2/15/23

cApplication—a standard Macintosh application
This is an extension to the existing cApplication object class. We add two
properties that contain text a word processor can display in its menu to list the
service provided by a speller, as well as a property that gives an alias record to
the application so it may be launched again.

Superclass cAbstractObject

Default Descriptor
Type

typeIntlText

Properties
pBatchMenuString

Description: This property is a text string suitable for displaying as a
menu item. It describes the service that will be performed
by the speller in response to receiving a "Batch Process
My Text" event. The value of the property may be a string
like "Check Spelling", "Check Grammar", or "Translate to
Greek".

Object Class ID: cIntlText
Inherited? No
Modifiable or
Non-modifiable? Non-modifiable

pInteractiveMenuString
Description: This property is a text string suitable for displaying as a

menu item. It describes the service that will be performed
by the speller in response to receiving an "Interactively
Process My Text" event. The value of the property may be
a string like "Check Spelling Interactively", "Check
Grammar Interactively", or "Translate to Greek on the
Fly".

Object Class ID: cIntlText
Inherited? No.
Modifiable or
Non-modifiable? Non-modifiable

pMenuIcon
Description: The value of this property is a small icon that may be

placed in the menu along with the interactive or batch
menu strings. It should be identical to the small icon that
the speller shows in the Finder. Word processors that take
advantage of this can use

Word Services Version 0.7 2/15/23

it to make the different menu items more distinguishable (a user might have
two different spelling checkers).

Object Class ID: typePixelMap
Inherited? No
Modifiable or
Non-modifiable? Non-modifiable

Notes When the word processor has located a new speller, it should ask for its
pBatchMenuString and pInteractiveMenuString properties. The strings
returned should be added to the word processor's menu, and should be
saved for next time as well. This way the user can have separate items
for each service they may want. It is quite possible that they may have a
number of different "spellers" on their machine, each with a menu item
for interactive and batch service (a particular speller might not support
both modes). The word processor should also have a menu item for
"New Service" to locate a speller it does not already know about, and a
"Delete Service" item to remove a service that is no longer needed.

If the word processor wants a richer interface, it can also request the
propMenuIcon property to get a typePixelMap object that it may use as
a small icon for the menu items.

Here is a suggested layout for such a menu. New services are just
appended to the end. This is just a suggestion! There are many ways
this could be done - services could be selected from a scrolling list, or
minimal support might be provided by going to the PPCBrowser every
time checking is requested.

Word Services Version 0.7 2/15/23

pLocation
Description: This property is an alias record that one may save, and use

to launch the application again at a later time.
Object Class ID: typeAlias
Inherited? No.
Modifiable or
Non-modifiable? Non-modifiable

Notes Word processors should get this property from spellers when they first
locate them, and save the alias record as a resource in their preferences
file. When the user chooses the menu item associated with this alias,
the word processor should use IPCListPorts to see if the speller is
already running. If it is not, then the word processor should send the
Open Selection event to the Finder to launch the speller.

Word Services Version 0.7 2/15/23

Primitive object classes defined in the Word Services
suite

Table X-3 lists the primitive Apple event object classes (classes with no properties and
only one element) defined in the Word Services suite.

■ Table X-3 Primitive object classes defined in the Word Services suite

Object class ID Descriptor type of element Description

cBackgroundHilite typeObjectSpecifier
cBackgroundHilite

object is an object specifier for a range
of text that is shown hilighted, even
when the containing window is in the
background.

Word Services Version 0.7 2/15/23

Descriptor types defined in the Word Services suite

There are no new descriptor types in this suite. (I leave the table in, in case we want
to add types in a later draft).

■ Table X-4 Descriptor types defined in the Word Services suite

Descriptor type Description

typeThis description
typeAEThat description

Word Services Version 0.7 2/15/23

Key forms defined in the Word Services suite

There are no new key forms in this suite. (I leave the table in, in case we want to add
key forms in a later draft).

■ Table X-5 Key forms defined in the Word Services suite

Key form constant Description

formRange Specifies a list of elements between two other elements (for
example, “the words between ‘Wild’ and ‘Zanzibar,’
inclusive”)

Comparison operators defined in the Word Services
suite

Table X-6 lists the comparison operators defined in the Word Services suite. There are
no new comparison operators in this suite. (I leave the table in, in case we want to add
comparison operatorsin a later draft).

■ Table X-6 Comparison operators defined in the Word Services suite

Comparison operator constant Operator Meaning

kAEBeginsWith 'bgwt' The value of the first operand
begins with the value of the second operand
(for example, the string “operand” begins
with the string “opera”).

Word Services Version 0.7 2/15/23

Constants defined in the Word Services suite

Table X-7 lists the constants defined in the Word Services suite.

■ Table X-7 Constants defined in the Word Services suite

Constant Value

kWordServicesClass 'WSrv'
kWSBatchCheckMe 'Btch'
kWSQueryReplace 'QRep'
kWSCheckInteractive 'CkIn'
kWSCheckWord 'CkWd'
pBackgroundHilite 'pBgH'
pBatchMenuString 'pBMs'
pInteractiveMenuString 'pIMs'
pLocation 'pALc'
pLockTransactionID 'pLID'
pCleanText 'pCTx'
keyListHead 'Lhed'
keyClientAddress 'Cadr'
keyWSGuessCount 'Gcnt'
keyWantCleanReport 'ClRp'

Word Services Version 0.7 2/15/23

Change History
Changes made since 0.7

1. Cleaned up typos galore.

2. Changed keyAEDirectObject to keyAEResult in reply for CheckWord event.

Changes made since 1.0a1

1. The spec has been formatted with the registry template.

2. Property names such as "propLocation" have been changed to "pLocation".

Changes made since 1.0d5
1. I changed the background hilighting from a property of the application to an
element of a cText object. There may be zero or more hilit ranges. An application
may choose to support multiple elements (so that grammar checkers may do disjoint
hilighting), one element (for the normal sort of text selection), or none at all, if
it is not feasible to show a selection when in the background. The highlighting is
removed by deleting all of the elements.

2. I added a new, optional paramater to the Batch event. The keyword is "keyListHead".
It the parameter is present and has the boolean value of "true", then the direct object
is a table of object specifiers that are maintained by the word
processor. The elements in this table are specifiers for the cText objects that are to
be spellchecked.

3. I corrected the note about specifying a range within a text field to be checked.
The beginning of the range must be relative to the beginning of the text field, and
the end must be relative to the end, rather than both relative to the end.

4. I added an optional parameter to the Batch event, keyClientAddress, which allows
a different program to be specified as the target for spellchecking. This would allow
a scripting program to tell a speller to spellcheck a word processing document.

5. I added the propMenuIcon to the speller cApplication object. The word processor

Word Services Version 0.7 2/15/23

may request the data for this property to display alongside the menu strings.

6. I added the propLockTransactionID property to the cText object. This allows a speller to
request exclusive access to a text field.

7. The constants were changed to match the final Apple Event Registry. (keyAETheData
changed to keyAEData, etc.)

8. Added the "Query Replace" event that is used by the speller to request text
replacement in the word processor during faceless checking.

9. Added the definition of the "Interactively Check Word" event.

10. Added the "propCleanText" property to the cChar object class to allow ranges of
characters to be marked as clean, so that a word processor can choose not to re-spellcheck
them. This is only done if requested in the keyWantCleanReport parameter of the
"Batch Process My Text" event.

Word Services Version 0.7 2/15/23

